Reconstruction of a Photonic Qubit State with Quantum Reinforcement Learning

An experiment is performed to reconstruct an unknown photonic quantum state with a limited amount of copies. A semiquantum reinforcement learning approach is employed to adapt one qubit state, an “agent,” to an unknown quantum state, an “environment,” by successive single-shot measurements and feedback, in order to achieve maximum overlap. The experimental learning device herein, composed of a quantum photonics setup, can adjust the corresponding parameters to rotate the agent system based on the measurement outcomes “0” or “1” in the environment (i.e., reward/punishment signals). The results show that, when assisted by such a quantum machine learning technique, fidelities of the deterministic single-photon agent states can achieve over 88% under a proper reward/punishment ratio within 50 iterations. This protocol offers a tool for reconstructing an unknown quantum state when only limited copies are provided, and can also be extended to higher dimensions, multipartite, and mixed quantum state scenarios.

DETAILS
  • Research Type Article
  • RESEARCH YEAR 2019
  • Journal Name Advanced Quantum Technology
  • Authors S. Yu, F. Albarrán-Arriagada, J. C. Retamal, Yi-Tao Wang, Wei Liu, Zhi-Jin Ke, Yu Meng, Zhi-Peng Li, Jian-Shun Tang, E. Solano, L. Lamata, Chuan-Feng Li, and Guang-Can Guo
  • DOI 10.1002/qute.201800074